Хүзүүний зүүлт бүр нь гоо үзэсгэлэнгээр гялалзаад зогсохгүй математикийн нууцыг шивнэдэг ертөнцийг төсөөлөөд үз дээ. Комбинаторик болон дизайны төгс хослол болох м үсэгтэй хүзүүний зүүлтүүдийн гайхалтай ертөнцөд ороорой. Эргүүлэх, тусгах нь адилхан гэж тооцогддог эдгээр дугуй хэлбэртэй үсгүүд нь математикч, дизайнеруудын аль алиных нь эрдэнэсийн сан юм. Эдгээр гоёмсог хүзүүний зүүлтүүдийн цаана байгаа ид шид, нарийн төвөгтэй байдлыг нээцгээе.
М үсэгтэй хүзүүний зүүлт нь зүгээр л гоёмсог үнэт эдлэлээс илүү юм; Эдгээр нь математикийн зарчмуудын дүрслэл бөгөөд математик болон уран сайхны аль алиныг нь судлах баялаг талбарыг санал болгодог. Бөмбөлгүүдийн нарийн хээнээс эхлээд тэдгээрийг үүсгэдэг нарийн төвөгтэй алгоритм хүртэл m үсэгтэй хүзүүний зүүлт нь математикийн нарийвчлалыг дизайны бүтээлч сэтгэлгээтэй хослуулсан.
Үндсэн комбинаторын асуудлаас эхэлцгээе: М үсэгтэй хүзүүний зүүлт үүсгэж болох тоог тоолох. Энгийн жишээг авч үзье: урт ( n ) А ба В үсэг бүхий хоёртын зүүлт. Энд байгаа асуудал бол эдгээр зүүлтийг тоолох явдал бөгөөд хэрэв хоёр зүүлт нь нэгийг нь эргүүлэх эсвэл нөгөөтэй нь тааруулах боломжтой бол ижилхэн байдаг.
Энд Бернсайдын лемма гарч ирдэг. Бернсайдын лемма нь бүлгийн онолын хүчирхэг хэрэгсэл бөгөөд тэгш хэмийн үйлдэл бүрээр тогтоогдсон тохиргооны тоог дундажлан өөр өөр зүүлтүүдийн тоог тоолоход тусалдаг. Урт ( n ) хоёртын зүүлтний хувьд ялгаатай зүүлтүүдийн тоог олох томъёо нь дараах байдалтай байна.:
[
\frac{1}{n} \sum_{d \mid n} \phi(d) \cdot 2^{n/d}
]
Энд нийлбэр нь ( n )-ийн бүх хуваагч ( d ) дээр байх ба (\phi) нь Эйлерсийн функц юм.
М үсэгтэй хүзүүний зүүлтүүдийн математик шинж чанарууд нь бүлгийн онолд гүн гүнзгий үндэслэсэн байдаг, ялангуяа тойргийн тэгш хэмийг илэрхийлдэг хоёр талт бүлэг ( D_n ). Хоёр талт бүлэгт ( n ) эргэлт ба ( n ) тусгал багтсан бөгөөд ( n ) талт олон өнцөгтийн бүх боломжит тэгш хэмийг олж авна. Хүзүүний зүүлтүүдийн хувьд эдгээр тэгш хэм нь хүзүүний зүүлтийг өөр дээрээ дүрсэлсэн эргэлт, тусгалтай тохирдог.
Эйлерсийн totient функц (\phi(n)) нь ( n ) -ээс бага бүхэл тоонуудын тоог ( n ) -тэй харьцуулдаг тул шийдвэрлэх үүрэг гүйцэтгэдэг. Энэ функц нь жижиг дарааллыг давтах замаар бүтээх боломжгүй aperiodic зүүлтний тоог тодорхойлоход зайлшгүй шаардлагатай.
М үсэгтэй хүзүүний зүүлтийг алгоритмын дагуу бий болгох нь нарийн төвөгтэй үйл явц боловч бүтээлч байдал, логик хоёр нийлдэг. Нэг арга нь том зүүлт дээр жижиг хүзүүний зүүлт хийдэг рекурсив аргуудыг хамардаг бөгөөд ингэснээр шинэ зүүлт бүр өвөрмөц байх болно. Буцах алгоритмууд нь онцгой үр дүнтэй бөгөөд боломжит бүх тохиргоог системтэйгээр судалж, давхардлаас зайлсхийдэг.
Рекурсив алгоритмаар хийсэн хүзүүний зүүлтийг төсөөлөөд үз дээ, бөмбөлгүүдийг бүрийг дүрмийн дагуу болгоомжтой байрлуулж, эцсийн загвар нь өвөрмөц бөгөөд гоо зүйн хувьд тааламжтай байх болно.
М үсэгтэй хүзүүний зүүлтийг зохион бүтээгчид хэлбэр, функцийг тэнцвэржүүлж, зүүлт нь утга учиртай хэв маягийг илэрхийлэхийн зэрэгцээ нүдэнд харагдахуйц сэтгэл татам байх ёстой. Тэгш хэм нь эдгээр загваруудын тулгын чулуу бөгөөд хүзүүний зүүлт нь ихэвчлэн эргэдэг эсвэл цацруулдаг тэгш хэмтэй байдаг бөгөөд эв найрамдал, тэнцвэрийн мэдрэмжийг бий болгодог.
Бөмбөлгүүдийг, хатгамал ашиглан загвар зохион бүтээгчид нарийн төвөгтэй хэв маяг, өнгө бий болгож, дизайны нарийн төвөгтэй байдал, гоо сайхныг сайжруулдаг. Жишээлбэл, ирмэгээр урласан хүзүүний зүүлт нь өнгө, хэлбэрийн дарааллаар давтагдаж, нүдэнд харагдахуйц гайхалтай загвараар давтагддаг бол хатгамалаар хийсэн хүзүүний зүүлт нь нэхмэлийн нарийн төвөгтэй техникийг харуулж болно.
М үсэгтэй хүзүүний зүүлт нь компьютерийн шинжлэх ухаан, криптографийн практик хэрэглээг олдог. Эдгээрийг өгөгдлийг шахах алгоритмд ашигладаг бөгөөд дарааллыг үр ашигтай хадгалах, дамжуулах зорилгоор шахах тэмдэгтүүдийн цуврал болгон авч үздэг. Илүүдэл тоог тодорхойлж, шаардлагагүй давталтыг арилгаснаар эдгээр зүүлт нь илүү авсаархан, үр ашигтай мэдээллийн бүтцийг бий болгоход тусалдаг.
Криптографийн хувьд хүзүүний зүүлт үүсгэх, тоолох нарийн төвөгтэй байдлыг ашиглан аюулгүй кодчиллын схемийг бий болгодог. Өгөгдсөн урттай байж болох асар олон тооны зүүлт нь мессежийг кодлох нь зөвшөөрөлгүй талуудын хувьд хэцүү ажил хэвээр байх бөгөөд ингэснээр мэдээллийг хамгаалах болно. Энэ нь м үсэгтэй зүүлтийг биологийн дарааллаар дүрсийг тодорхойлох, уран сайхны загварт дүн шинжилгээ хийх гэх мэт хэв маягийг таних ажилд үнэлж баршгүй хэрэгсэл болгодог.
М үсэгтэй хүзүүний зүүлт хийх нь бүтээлч байдал, техникийн ур чадварын нэгдэл юм. Уг процесс нь голдуу бөмбөлгүүдийг, утас, даавуу гэх мэт материалыг сонгож, дараа нь тэдгээрийг тодорхой загвараар зохион байгуулах явдал юм. Нэхэх, нэхэх нь түгээмэл арга бөгөөд тус бүр нь өвөрмөц сорилт, боломжуудыг санал болгодог. Жишээлбэл, сүлжмэлийн хувьд нарийн, гоо зүйн хувьд тааламжтай хэв маягийг бий болгохын тулд оёдлын дарааллыг анхааралтай ажиглах шаардлагатай байдаг бол нэхэх нь нугас, сүлжмэлийн утсыг байрлуулахад нарийвчлал шаарддаг.
М үсэгтэй хүзүүний зүүлт нь математик, урлагийн сайхан уулзвар бөгөөд эрэл хайгуул, бүтээлийн баялаг талбарыг санал болгодог. Эдгээр дугуй хэлбэртэй үсгүүд нь тэдгээрийн хослолын нарийн төвөгтэй байдлаас эхлээд гоо зүйн боломжууд хүртэл математикийн зарчим, уран сайхны илэрхийлэлийг хоёуланг нь харах өвөрмөц линзийг өгдөг. Мэдээллийн шахалт, криптограф эсвэл уран сайхны дизайнд ашигласан эсэхээс үл хамааран м үсэгтэй хүзүүний зүүлт нь бидний эргэн тойрон дахь ертөнцөд математикийн гүн гүнзгий нөлөөллийг харуулсан урам зориг, сорилтыг үргэлжлүүлсээр байна. Бид эдгээр зүүлтийг урлахдаа математикийн зарчмуудыг амилуулахаас гадна бидний уран бүтээлийг чөлөөтэй урсгаж, тэдний өгүүлдэг түүх шиг өвөрмөц хэсгүүдийг бүтээдэг.
2019 оноос хойш үнэт эдлэл, Хятад, хятад, үнэт эдлэлийн үйлдвэрлэлийн суурь байгуулагдсан. Бид бол үнэт эдлэлийн аж ахуйн нэгжийн загвар, үйлдвэрлэл, худалдаа, худалдаа.
+86-19924726359/+86-13431083798
Шал 13, Гоме ухаалаг хотын баруун цамхаг, Үгүй. 33 juxin гудамж, Haizhu дүүрэг, Гуанжоу, Хятад.