Fungidzira nyika umo chishongo chega chega chisiri kungopenya nerunako chete asiwo chinozevezera zvakavanzika zvemasvomhu. Pinda iyo inonakidza nzvimbo ye-m-tsamba mitsipa, musanganiswa wakakwana wecombinatorics uye dhizaini. Aya marongerwo edenderedzwa emabhii, uko kutenderedzwa uye kutariswa kunoonekwa zvakafanana, idura rehupfumi kune vese nyanzvi dzemasvomhu nevagadziri. Rega tinyure mukati kuti tiburitse mashiripiti uye kuomarara kuseri kweiyi mitsipa inoyevedza.
M-tsamba mitsipa inopfuura kungonaka zvidimbu zvezvishongo; iwo mufananidzo unooneka wemisimboti yemasvomhu, ichipa nzvimbo yakapfuma yekuongorora zvese masvomhu uye nehunyanzvi. Kubva pamaitiro akaomarara emabead kusvika kune akaomarara algorithms anoagadzira, m-tsamba dzehuro dzinosanganisa kurongeka kwemasvomhu nehunyanzvi hwekugadzira.
Ngatitangei neiyo yakakosha combinatorial dambudziko: kuverenga huwandu hweakasiyana m-tsamba marekeni anogona kuumbwa. Chimbofunga muenzaniso wakajeka: bhinary necklace uchishandisa mavara maviri, A uye B, ehurefu (n). Chinonetsa apa ndere kuverenga macheni aya, tichitarisa kuti necklace mbiri dzakafanana kana imwe ichigona kutenderedzwa kana kutaridzwa kuti ifanane neimwe.
Apa ndipo panopinda lemma yaBurnside. Burnside's lemma chishandiso chine simba mudzidziso yeboka iyo inotibatsira kuverenga nhamba dzakasiyana dzemitsipa neavhareji yehuwandu hwezvigadziriso zvinogadziriswa nechero symmetry mashandiro. Kune bhinary necklace yehurefu ( n ), fomula yekuwana nhamba yehuro yakasiyana ndeye.:
[
\frac{1}{n} \sum_{d \pakati n} \phi(d) \cdot 2^{n/d}
]
apo nhamba iri pamusoro pevose vanopatsanura ( d ) ye ( n ), uye (\ phi) inonzi Eulers totient basa.
Zvimiro zvemasvomhu zvem-tsamba mitsipa yakadzika midzi muboka redzidziso, kunyanya boka redhihedral (D_n), rinomiririra kuenzanisa kwedenderedzwa. Boka redhidhidhi rinosanganisira (n) kutenderera uye (n) ratidziro, kutora zvese zvinogoneka symmetries ye (n)-sided polygon. Muchirevo chemitsipa, aya masimidhi anowirirana nekutenderera uye maratidziro anomepu yehuro pachayo.
Eulers totient function (\phi(n)) inoita basa rakakosha pano, sezvo ichiverenga nhamba yenhamba ishoma pane ( n ) inokwana ku ( n ). Iri basa rinokosha pakusarudza nhamba yeaperiodic necklaces, iyo isingagoni kugadzirwa nekudzokorora kutevedzana kuduku.
Kugadzira m-tsamba mitsipa algorithmically inzira inonetsa, asi zvakare uko hunyanzvi uye pfungwa dzinouya pamwechete. Imwe nzira inosanganisira nzira dzinodzokororwa, uko madiki madiki anovakwa pane akakura, kuve nechokwadi chekuti mutsipa mutsva wega wega wakasiyana. Backtracking algorithms inonyanya kushanda, kunyatsoongorora zvese zvinogoneka zvigadziriso uku uchidzivirira zvakapetwa.
Fungidzira chishongo chakaitwa kuburikidza nealgorithm inodzokororwa, apo bhiza rimwe nerimwe rinonyatsoiswa maererano neseti yemitemo, kuve nechokwadi chekuti dhizaini yekupedzisira ndeyeyega uye inoyevedza.
Vagadziri ve-m-tsamba mitsipa vanofanirwa kuenzanisa chimiro uye kushanda, kuve nechokwadi chekuti mitsipa inoburitsa mapatani ane musoro uku ichikwezva zvinoonekwa. Symmetry ibwe repakona rezvigadziriso izvi, zvine mitsipa inowanzo ratidza kutenderera kana kupenya symmetry kugadzira pfungwa yekuwirirana uye kuenzanisa.
Vachishandisa beadwork uye embroidery, vagadziri vanogona kugadzira mapatani nemavara akaomarara, vachiwedzera kuoma uye kunaka kwezvigadziriso. Semuyenzaniso, necklace yakagadzirwa nerukova inogona kuratidza kutevedzana kwemavara uye maumbirwo ayo anodzokorora nenzira inoyevedza inooneka, nepo imwe yakagadzirwa neyakarukwa inogona kuratidza machira akaomarara.
M-tsamba mitsipa inowana zvinoshanda musainzi yekombuta uye cryptography. Iwo anoshandiswa mune data compression algorithms, uko kutevedzana kunoitwa senge nhevedzano yezviratidzo kuti zvitsigirwe kuitira kuchengetedza kwakanaka uye kutapurirana. Nekuona kuregererwa uye kubvisa kudzokorora kusingakoshi, idzi mitsipa dzinobatsira mukugadzira yakawanda compact uye inoshanda data zvimiro.
Mune cryptography, kuoma kwekugadzira uye kuverenga mitsipa kunowedzerwa kugadzira akachengeteka encoding zvirongwa. Huwandu hukuru hwehutsi hunogoneka hwehurefu hwakapihwa hunovimbisa kuti mameseji encoding anoramba ari basa rakaoma kumapato asina mvumo, nekudaro kuchengetedza ruzivo. Izvi zvinogadzira m-tsamba maturusi akakosha mumabasa ekuzivikanwa kwepateni, senge kuona motifs mubhayoloji kutevedzana kana kuongorora dhizaini.
Kugadzira m-tsamba mitsipa musanganiswa wekusika uye hunyanzvi hwehunyanzvi. Maitiro acho anowanzo sanganisira kusarudza zvinhu zvakaita sebead, shinda, kana jira, wozozvironga mune chaiyo pateni. Kuruka nekuruka inzira dzakakurumbira, imwe neimwe ichipa matambudziko akasiyana nemikana. Semuyenzaniso, kuruka kunoda kutarisisa kutevedzana kwematichi kuti tive nechokwadi chepatani chaiyo uye inoyevedza, ukuwo kuruka kunoda kurongeka pakugadzika shinda dzewarp uye weft.
M-tsamba mitsipa inomiririra mharadzano yakanaka yemasvomhu nehunyanzvi, ichipa munda wakapfuma wekuongorora nekugadzira. Kubva pakusanganisa kwavo kuomarara kusvika kune zvavanogona kuita, idzi denderedzwa marongero emabhii zvinopa lenzi yakasarudzika kuburikidza nekuona ese masvomhu nekutaura kwehunyanzvi. Ingave ichishandiswa mukudzvanya data, cryptography, kana dhizaini yehunyanzvi, m-tsamba dzehuro dzinoramba dzichikurudzira uye kupikisa, zvichiratidza kukanganisa kwakadzama kwemasvomhu papasi rakatipoteredza. Sezvo isu tichigadzira macheni aya, hatingounze misimboti yemasvomhu kuhupenyu asiwo tinobvumira hunyanzvi hwedu kuti huyerere zvakasununguka, tichigadzira zvidimbu zvakasiyana senyaya dzavanotaura.
Kubva pa199, sangana nezvishongo zvako zvakavambwa muGuangzhou, China, zvishongo zvibodzwa zvechikepe. Isu tiri zvishongo zvebhizinesi yekubatanidza dhizaini, kugadzirwa nekutengeswa.
+86-19924726359/+86-13431083798
Floor 13, West Shongwe yeGome Smarn Guta, Kwete. 33 Juxin Street, Hizhu District, Guangzhou, China.