loading

info@meetujewelry.com    +86-19924726359 / +86-13431083798

Ukuhlaziya Umehluko Wobunzima be-Algorithm ye-MTSC7196

Ukuqonda I-algorithm Complexity

Isikhathi vs. I-Space Complexity

Ubunkimbinkimbi be-algorithm ngokuyinhloko bubhekana nezinsiza ezimbili: isikhathi (ubude bokwenza) kanye isikhala (ukusetshenziswa kwememori). Ngenkathi inkimbinkimbi yesikhathi ikala ukuthi isikhathi sokusebenza sikhula kanjani ngosayizi wokufaka ( n ), ubunkimbinkimbi besikhala buhlola ukusetshenziswa kwenkumbulo. Ngokwesibonelo:
- I-algorithm ene O(n) ubunkimbinkimbi besikhathi bukala ngokulandelana nosayizi wokufaka.
- I-algorithm ene O(1) inkimbinkimbi yesikhala isebenzisa inkumbulo engaguquki kungakhathaliseki ukuthi ungakanani usayizi wokufaka.

Womabili amamethrikhi abalulekile. I-algorithm esheshayo ingase iqede inkumbulo kumadathasethi amakhulu, kuyilapho i-algorithm eyonga inkumbulo ingase ihambe kancane ezinhlelweni zesikhathi sangempela.

Ukubaluleka ku-Algorithm Design

Ukusebenza kahle kunquma ukuba nokwenzeka. Cabangela ukuhlunga uhlu lwezinto ezingu-10 ngokumelene nezigidi ezingu-10:
- A uhlobo lwebhamuza ( O(n) ) ingase yanele kumadathasethi amancane kodwa ingenzeki kwamakhulu.
- A hlanganisa uhlobo ( O(n log n) ) iphatha amasethi edatha amakhulu ngomusa kodwa idinga inkumbulo eyengeziwe.

Ukuhlaziya okuyinkimbinkimbi kunikeza ulimi lomhlaba wonke ukuze kuqhathaniswe ama-algorithms, kukhishwe imininingwane eqondene nehadiwe. Inika amandla abathuthukisi ukuthi babikezele ukwehla futhi bagweme izingqinamba ezinhlelweni ezibucayi.


I-Asymptotic Notations: Ulimi Oluyinkimbinkimbi

Amanothi e-asymptotic achaza ukuziphatha okukhawulela imisebenzi, enikeza isifinyezo sobunzima. Izimpawu ezintathu zokuqala ziyi:

I-Big O (O): I-Upper Bound (Isimo Esibi Kakhulu)

I-Big O notation ichaza isikhathi esiphezulu noma isikhala esizothathwa yi-algorithm. Ngokwesibonelo:
- O(1) : Isikhathi esihlala njalo (isb, ukufinyelela i-elementi yamalungu afanayo ngenkomba).
- O(n) : Isikhathi somugqa (isb, ukuphindaphinda ngohlu).
- O(n) : Isikhathi se-quadratic (isb, izihibe ezifakwe esidlekeni ngokuhlunga kwebhamuza).

I-Big O iyimethrikhi esetshenziswa kakhulu, njengoba iqinisekisa uphahla lokusebenza.

I-Omega : Isibopho Esiphansi (Ikesi Elingcono Kakhulu)

I-Omega ichaza ubuncane besikhathi esidingekayo. Ngokwesibonelo:
- Ukusesha ngomugqa kune (1) uma okuqondiwe kuyisici sokuqala.

Nakuba kunethemba, ukuhlaziya izimo ezingcono kakhulu akulona ulwazi oluncane ngokuhlela izimo ezimbi kakhulu.

I-Theta: I-Tight Bound (Ikesi Elimaphakathi)

I-Theta ihlanganisa i-Big O ne-Omega, emele ukuziphatha okungafani nhlobo. Uma ama-algorithms angcono kakhulu nezimo ezimbi kakhulu ziyefana:
- (n log n) kusebenza ekuhlanganiseni izinhlobo ezimaphakathi nezimo ezimbi kakhulu.

Lezi zimpawu azihambisani nezimo ezingaguquki kanye namagama e-oda eliphansi, egxile emazingeni okukhula. Ngokwesibonelo, 2n + 3n + 4 yenza kube lula O(n) ngoba igama le-quadratic libusa ngokukhulu n .


Amakilasi Okuyinkimbinkimbi Okujwayelekile

Ukuqonda amakilasi ayinkimbinkimbi kusiza ukuhlukanisa ama-algorithm ngokulinganisa. Nakhu ukulandelana kusuka kokuningi kuya kokusebenza kancane:

O(1): Isikhathi Esijwayelekile

Isikhathi sokwenza noma inkumbulo ihlala ingashintshiwe njenge n iyakhula.
- Isibonelo : Ukufinyelela inani lethebula le-hash ngokhiye.

O(log n): Isikhathi se-Logarithmic

Isikhathi sokusebenza sikhula nge-logarithmically nge n .
- Isibonelo : Ukusesha kanambambili kuhhafu wesikhala sokufaka ukuphindaphinda ngakunye.

O(n): Isikhathi Somugqa

Isikhathi sokusebenza sikala ngokulinganayo nge n .
- Isibonelo : Ukusesha ngomugqa ngohlu olungahlungiwe.

O(n log n): Isikhathi se-Linearithmic

Okujwayelekile kuma-algorithms wokuhlukanisa futhi-unqobe.
- Isibonelo : Hlanganisa ukuhlunga nokuhlunga kwenqwaba.

O(n): Isikhathi seQuadratic

Ukuphindaphinda okufakwe isidleke kuholela ekukhuleni okuqhumayo.
- Isibonelo : Ukuhlunga kwebhamuza nohlobo lokukhetha.

O(2): Isikhathi Esichazayo

Isikhathi sokusebenza siphinda kabili ngokokufaka ngakunye okwengeziwe.
- Isibonelo : Ukubala kwe-Fibonacci okuphindaphindayo ngaphandle kokukhumbula.

O(n!): Isikhathi Sefektri

Ama-algorithms asekelwe ekuvumeleni.
- Isibonelo : Ukuxazulula inkinga yomthengisi ohambayo ngokusebenzisa i-brute-force.

Umehluko phakathi O(n log n) futhi O(n) iba buhlungu n = 10 : eyokuqala ingase isebenzise ngama-millisecond, kuyilapho okwakamuva kungathatha izinsuku.


Ukuhlaziywa Kwekesi: Izimo Ezinhle Kakhulu, Ezimaphakathi, nezimbi Kakhulu

Ama-algorithms asebenza ngendlela ehlukile ngokusekelwe ekucushweni kokufaka. Ukuhlaziya zonke izimo kuqinisekisa ukuqina:

Ikesi Elingcono Kakhulu: Okokufaka Okufanelekile

  • Isibonelo : Isinyathelo sokuhlukanisa se-QuickSorts sihlukanisa amalungu afanayo ngokulinganayo, anikeze O(n log n) .

Isimo esibi kakhulu: Okokufaka kwe-Pathological

  • Isibonelo : I-QuickSort yehlisa isithunzi ku O(n) uma i-pivot iyisici esincane kakhulu kuhlelo oluhleliwe.

I-average-Case: Okokufaka okungahleliwe

  • Isibonelo : Izilinganiso ezimaphakathi ze-QuickSort O(n log n) ngedatha engahlungiwe.

Imithelela Engokoqobo

I-database query optimizer ingase ikhethe phakathi kokujoyina i-hashi ( O(n + m) ) kanye nokuhlanganisa i-loop esidlekeni ( O(nm) ) ngokusekelwe ekusabalaliseni idatha. Ukuhlaziywa kwezimo ezimbi kakhulu kubalulekile ezinhlelweni ezibaluleke kakhulu zokuphepha (isb., isofthiwe yezindiza), lapho ukungaqiniseki kungamukeleki khona.


Ukuqhathanisa ama-algorithms enkinga efanayo

Inkinga efanayo ingaxazululwa ngokusebenzisa ama-algorithms ahlukene. Isibonelo, inkinga yokusesha inani eliqondiwe ohlwini lwamanani ingaxazululwa kusetshenziswa ama-algorithms ahlukene, njengokusesha ngomugqa, ukusesha kanambambili, noma ukusesha kwethebula le-hash.

Ithebula elingezansi liqhathanisa ubunkimbinkimbi besikhathi nendawo yalawa ma-algorithms okusesha inani eliqondiwe ohlwini lwazo n amanani.

Ukukhethwa kwe-algorithm kuncike kusayizi wenkinga, izici zokufakwayo, nezinsiza ezitholakalayo. Isibonelo, uma uhlu luncane futhi lungahlungiwe, ukusesha ngomugqa kungase kube inketho engcono kakhulu. Uma uhlu lukhulu futhi luhlungiwe, ukusesha kanambambili kungase kube inketho engcono kakhulu. Uma uhlu lukhulu futhi lungahlungiwe, ukusesha kwethebula le-hash kungase kube inketho engcono kakhulu.


Izihloko Ezithuthukile Ekuhlaziyeni Okuyinkimbinkimbi

I-Amortized Analysis

Ukuhlaziya okukhokhelwayo kulinganisa isikhathi phakathi nokulandelana kwemisebenzi.
- Isibonelo : Amalungu afanayo anamandla umthamo ophindwe kabili uma egcwele. Ngenkathi eyodwa Phusha ukuhlinzwa kungase kuthathe O(n) isikhathi, izindleko amortized uhlala O(1) .

Ukuhlaziya Okungenzeka

Ama-algorithms afana I-Monte Carlo futhi Las Vegas sebenzisa okungahleliwe ukuze usebenze kahle.
- Isibonelo : Ukuhlolwa kwe-Miller-Rabin primality kuneziqinisekiso ezingenzeka kodwa kuyashesha kunezindlela ezinqumayo.

I-NP-Ukuphelela kanye Nokwehliswa

Ezinye izinkinga (isb, ukwaneliseka kwe-Boolean) ziyi I-NP-iqedile , okusho ukuthi asikho isisombululo esaziwayo sesikhathi se-polynomial esikhona. Ukufakazela ukuphelela kwe-NP ngokuncishiswa kusiza ukuhlukanisa ubulukhuni bekhompyutha.


Imithelela Esebenzayo Yokuhlukahluka Okuyinkimbinkimbi

Idatha Enkulu Nokufunda Ngomshini

An O(n) ukuhlanganisa i-algorithm kungase kube ibhodlela lamasethi edatha amakhulu, kubangele amashifu ezindleleni ezilinganiselwe njengezihlahla ze-kd ( O(n log n) ).

I-Cryptography

Amasistimu wokhiye womphakathi ancike ebukhuni be O(2) izinkinga (isb, i-integer factorization) ukumelana nokuhlaselwa.

Ukuthuthukiswa Kwegeyimu

Izinjini zokunikezela ngesikhathi sangempela zibeka phambili O(1) Ama-algorithms wokulingiswa kwe-physics ukugcina ama-60+ FPS.

Ukukhetha i-algorithm efanele

Uhwebo lubalulekile:
- Isikhathi vs. Isikhala : Sebenzisa amamephu we-hash ( O(1) lookups) ngenani lenkumbulo.
- Ubulula vs. Optimality : Uhlobo lokufaka ( O(n) ) kungase kube kuhle kumadathasethi amancane, acishe ahlungwe.


Amathuluzi Namasu Okuhlaziya Ubunkimbinkimbi

Ubudlelwano bokuphinda

Kuma-algorithms aphindaphindayo, isikhathi sokusebenza semodeli yobudlelwano bokuphinda. Isibonelo, hlanganisa ukuphinda kwezinhlobo:
[ T(n) = 2T(n/2) + O(n) ] unquma ukuthi O(n log n) nge I-Master Theorem .

Ukulinganisa izilinganiso

Ukuhlola okungokomlando kuhambisana nokuhlaziywa kwethiyori. Amathuluzi okwenza iphrofayela (isb, i-Valgrind, i-perf) aveza amabhodlela omhlaba wangempela.

Ukuhlaziywa kwe-Asymptotic kuKhodi

inhlwathi


O(n) ubunkimbinkimbi besikhathi

def linear_sum(arr):
inani = 0
nge num in arr:
inani += inani
inani lokubuyisela


O(n) ubunkimbinkimbi besikhathi

def quadratic_sum(arr):
inani = 0
ngoba ngi-arr:
kwe j ku:
inani += i * j
inani lokubuyisela

Izingibe Ezivamile kanye Nemibono Engalungile

Ukuziba Ama-Constant kanye Nemigomo Ye-oda Eliphansi

Ngenkathi O(n) abstracts away constants, a 100n I-algorithm ingase ihambe kancane kune-a 0.01n i-algorithm yokusebenza n .

Ukwahlulela ngokungeyikho Osayizi Bokokufaka

An O(n log n) i-algorithm ingase ingasebenzi kahle O(n) okwe n = 10 ngenxa yokushisa.

I-Overlooking Space Complexity

Umsebenzi owenziwe ngekhanda we-Fibonacci ( O(n) space) ingaphahlazeka kokufakiwe okukhulu, ngokungafani nenguqulo ephindaphindayo ( O(1) isikhala).


Okudidayo Okubi kakhulu kanye Nesimo Esimaphakathi

I-BST yokuzilinganisa ( O(log n) ukusesha) kuphephile kune-BST evamile ( O(n) okubi kakhulu) kudatha engathenjwa.


Isiphetho

Ukuhlaziywa kobunzima be-algorithm kuyikhampasi eqondisa onjiniyela endaweni enkulu yokusebenza kahle kwekhompyutha. Kubafundi be-MTSC7196, ukwenza kahle lesi siyalo kuhlanganisa ulwazi lwethiyori nobungcweti bokusebenza. Ngokuhlukanisa izimfuneko zesikhathi nendawo, ukuqhathanisa imingcele ye-asymptotic, kanye nokuzulazula ekuhwebeni kwangempela komhlaba, onjiniyela bangakwazi ukwenza amasistimu enza isikali esihle futhi asebenze ngokwethembeka.

Enkathini echazwe ukusungulwa okusha okuqhutshwa idatha, ikhono lokubona phakathi kwe- O(n log n) kanye ne O(n) Isixazululo akukona nje ukuthi i-academicits ibalulekile ngamasu. Njengoba uqhubeka ezifundweni zakho, khumbula: ukuhlaziya okuyinkimbinkimbi akukhona nje izinombolo nezimpawu. Imayelana nokuqonda ukushaya kwenhliziyo kokubala ngokwakho.

Thintana nathi
Izindatshana ezinconyiwe
I-blog
Ayikho idatha

Kusukela ngo-2019, ukuzungeza ubucwebe basungulwa eGuangzhou, China, isisekelo sokukhiqiza ubucwebe. Singubucwebecwebe obuhlanganisa ukuklama, ukukhiqizwa nokuthengisa.


  info@meetujewelry.com

  +86-19924726359/+86-13431083798

  Phansi 13, I-West Tower of Gome Smart City, Cha. 33 Juxin Street, iHaizhu esifundeni, Guangzhou, China.

Customer service
detect